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Wearable assistant for Parkinson’s disease patients
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Abstract—We present a wearable assistant for Parkinson’s
disease (PD) patients with the freezing of gait (FOG) symptom.
This wearable system uses on-body acceleration sensors to
measure the patients’ movements. It automatically detects FOG
by analyzing frequency components inherent in these movements.
When FOG is detected, the assistant provides a rhythmic auditory
signal which stimulates the patient to resume walking.

Ten PD patients tested the system while performing several
walking tasks in the lab. Over eight hours of data were recorded.
Eight patients experienced FOG during the study and 237 FOG
events were identified by professional physiotherapists in a post-
hoc video analysis. Our wearable assistant was able to provide
online assistive feedback for PD patients when they experienced
FOG. The system detected FOG events online with a sensitivity
of 73.1% and a specificity of 81.6%. The majority of patients
indicated that the context aware automatic cueing was beneficial
to them. Finally we characterize the system performance with
respect to the walking style, the sensor placement, and the
dominant algorithm parameters.

Index Terms—Assistive cueing, context awareness, freezing of
gait, Parkinson’s disease, personal health assistant

I. I NTRODUCTION

W EARABLE HEALTH ASSISTANTS are electronic
coaches that help patients to negotiate specific prob-

lems related to their disease. In this article, we evaluate a
context-awarewearable health assistantto help Parkinson’s
disease (PD) patients experiencing freezing of gait (FOG).
The wearable health assistantaims at reducing the number
and length of their motor blocks and thus increase their safety
while walking.

PD is a common neurological disorder caused by the
progressive loss of dopaminergic and other sub-cortical neu-
rons [1]. PD patients often suffer from impaired motor
skills [2]. Besides a flexed posture, tremor at rest, rigidity, aki-
nesia (or bradykinesia) and postural instability, motor blocks
are a common negative effect of PD. Motor blocks (freezing)
most commonly affects the patients’ legs during walking and
is generally referred to as FOG. Clinical assessment of PD
is largely based on subjective patient reports. The Hoehn and
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Yahr (H&Y) scale is commonly used to describe symptoms of
PD progress. The scale uses five stages to indicate the relative
level of disability [3]. The five stages are:

• Stage1: Symptoms on one side of the body only.
• Stage2: Symptoms on both sides of the body; no impair-

ment of balance.
• Stage3: Balance impairment; mild to moderate disease;

physically independent.
• Stage4: Severe disability, but still able to walk or stand

unassisted.
• Stage5: Wheelchair-bound or bedridden unless assisted.

A. Freezing of gait

FOG typically manifests as a sudden and transient inability
to move. About 50% of all PD patients regularly show FOG
symptoms [4]–[6]. 10% of PD patients with mild symptoms
and 80% of those severely affected regularly experience freez-
ing. FOG occurs more frequently in men than in women and
less frequently in patients whose main symptom is tremor
[7]. PD Patients who experience FOG frequently report that
their feet are inexplicably glued to the ground during the
FOG episodes [8]. FOG is difficult to measure as it is highly
sensitive to environmental triggers, cognitive input and medi-
cation. For example, FOG occurs frequently at home and much
less frequently in the doctor’s office or in a gait laboratory
[9]. Evaluation of FOG conditions is usually done using a
FOG questionnaire (FOG-Q) [10]. Five subtypes of freezing
have been described by Schaafsma et al.: start hesitation, turn
hesitation, hesitation in tight quarters, destination hesitation
and open space hesitation [8]. FOG has substantial social and
clinical consequences for patients. It is a common cause of
falls [11], interferes with daily activities, and significantly
impairs quality of life [12].

B. Limits of pharmacological treatment for FOG prevention

Pharmacological management of PD is difficult and often
ineffective at relieving FOG. The most common form of
treatment used to manage motor symptoms in PD patients is
Levodopa (LD). The effect of LD on parkinsonian symptoms
wears off over time and the effective periods varies between
two to six hours. In some patients this wearing off effect is
expressed in a gradual deterioration in motor performance;in
others deterioration is relatively sharp and unexpected. The
later patients are known to exhibitmotor response fluctua-
tions. For these patients clear ON and OFF periods can be
distinguished, where ON periods refer to times when the
medication is effective and OFF periods refer to times when it
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is no longer effective. As the disease progresses the effective
duration of each drug dose shortens and more frequent LD
administration is necessary [7]. In addition, the development
of involuntary movements (i.e.,dyskinesia) and the OFF/ON
phenomena further limit mobility and complicate dosing.

Although FOG episodes generally appear more frequently
during the OFF state, gait deficits in PD patients are often
resistant to pharmacologic treatment [11]. Therefore effective
non-pharmacologic treatments need to be developed as an
adjunct therapy to relieve symptoms and improve mobility.

C. State of the art in non-pharmaceutical treatment of FOG

Various behavioral ’tricks’ were developed by clinicians and
patients to overcome freezing attacks. These tricks include
marching to command, stepping over a walking stick or cracks
in the floor, walking to music or a beat, and shifting body
weight. Such external cues are commonly considered effective
in alleviating FOG symptoms in PD patients [13], [14].

Lim et al. [15] performed an extensive review of the effects
of external rhythmical cueing on gait in PD patients and found
strong evidence for improvements in walking speed with the
help of auditory cues. Insufficient evidence was found for the
effectiveness of visual and somatosensory cueing. Similarly,
Nieuwboer et al. showed that auditory cueing is advantageous
with respect to visual and somatosensory cueing [16].

Rhythmic auditory stimulation (RAS) was shown to be
particularly effective at improving gait among PD patients.
Regular metronome ticking sounds were applied as RAS with
a rate of 110% compared to the natural walking rate of the
tested patient. This served to enhance their gait speed and
reduced gait variability (i.e., it improved gait stability[17]).
But there was no relative advantage to using this method to
improve gait in patients with PD that also suffer from FOG
(PD+FOG) compared to PD patients who do not suffer from
FOG (PD-FOG) [16]. Interestingly, a study in which PD+FOG
patients used the metronome recordings for cueing at home
showed no effect in reducing the freezing symptoms [18].

Therefore, the reason for investigating the proposed device
is to combine the incidental effect of external cueing to
alleviate freezing with the effect of auditory pacing to improve
gait in PD patients. Such a device will provide RAS only
during an actual or impeding FOG event.

D. Contribution

Past work using RAS either relied on an experimenter to
trigger cueing or on continuous cueing during the training
session. In order to help PD+FOG patients during daily life,
we propose a device that can provide context-aware acoustic
feedback to assist the patient. Such a wearable assistant will
provide RAS only during an actual or impeding FOG event.
Thus, the device acts as a context-aware wearable assistant
that activates only when necessary and remains transparent
in the other situations. Specifically, we present the following
contributions:

• A personal wearable assistant including algorithms to
detect FOG online and provide RAS;

• A study with 10 PD patients to evaluate the system;

• An objective evaluation of the FOG aware assistant by
analyzing the accuracy in detecting FOG;

• A subjective evaluation of the study by analyzing the
patients’ perception of the automatic context aware RAS;

• A detailed post-hoc performance analysis and assessment
of potential optimizations;

II. W EARABLE ASSISTANT FOR ONLINEFOG DETECTION

AND RHYTHMIC AUDITORY CUEING

A. Wearable Assistant Research Hardware

The wearable assistant is based on a tiny computer capable
of recording data and online signal processing. It is a cus-
tomized research platform based on an Intel XScale family
processor and using a Linux operating system designed for
rapid prototyping. It offers processing power comparable to

Fig. 1. FOG detection and feedback assistant worn by one patient. Sensors
are attached to the shank (just above the ankle) and the thigh(just above the
knee) using an elasticized strap and Velcro. A third sensor is attached to the
lower back to the same belt that the wearable computer is attached to.

an ultra portable PC with power consumption below2W . The
system runs for more than6h on a3.7V , 3.3Ah battery. The
packaged wearable computer is132 × 82 × 30mm3 in size
and weights231 grams. The system is modular in order to
realize different feedback and sensing modalities. By default
it offers USB and Bluetooth as extension interfaces, allowing
connections to diverse physiological and non-physiological
sensors [19]. The system can be extended using Zigbee or
ANT wireless interfaces with USB dongles. To avoid protrud-
ing parts as well as unintended disconnection of these dongles,
the system provides an internal USB bay within the system’s
housing. There is also space and an interconnection possibility
for an internal PCB extension board. The extension board is
interfaced to a3.5mm jack at the front and is intended to be
used to prototype various signal acquisition and conditioning
hardware (e.g. for ECG or galvanic skin response sensing),
or to provide user feedback. In the current version for the
study the wearable assistant was implemented by extending
the system with an auditory feedback module and earphones
connected to the3.5mm jack.

Two sensors used to measure 3D-acceleration were attached
to the patients’ leg; one at the shank, just above the ankle,
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and the other to the thigh, just above the knee. A third 3D-
accelerations sensor was attached to the belt, at the lower back
of the patient. The acceleration sensors are25×44×17mm3 in
size and weigh less than22 grams, including a rechargeable
300mAh Li-ion battery with 6h battery life. The acquired
data is transmitted to the wearable computer over a wire-
less Bluetooth link (64Hz) for online data processing. The
earphones are placed loosely around the patient’s neck. The
computing system produces a1Hz ticking sound starting
whenever an FOG episode is identified and ending when the
patient resumes walking. Figure 1 shows the wearable system
worn by a patient.

B. Principle of the FOG detection algorithm

Bonato et al. presented the first evidence that data mining
and signal processing allow to recognize the presence and
severity of motor functions in PD patients [20]. Hausdorff
and colleagues examined the ground reaction force signal
measured with force sensitive insoles in the shows worn
by PD patients that were walking normally or experiencing
FOG episodes. Using time series and fractal analysis methods
they found that FOG is not a frozen akinetic state, nor is
freezing a random, uncorrelated attempt to overcome motor
blockades [21]. Instead, the measured forces signal oscillated
in a fairly organized pattern. More recently, Moore et al.
measured the vertical acceleration of the left shank of 11 PD
patients and analyzed the power spectra over6 sec signal in-
tervals [22]. They discovered that high-frequency components
of leg movement in the [3-8Hz] band during FOG were not
apparent during normal standing or walking. Moore introduced
a freeze index (FI) to objectively identify FOG offline. ThisFI
is defined as the power in the ’freeze’ band [3-8Hz] divided by
the power in the ’locomotor’ band [0.5-3Hz]. FOG is detected
using a ’freeze’ threshold. FI values above this threshold are
identified as FOG events.

C. Online Implementation of the Algorithm

We developed an online FOG detection algorithm based on
the principle described by Moore and introduced the following
improvements: i) a reduced latency, ii) inclusion of an energy
threshold, and iii) real-time online operation.

Figure 2a-c) shows the power spectral density (PSD) derived
from a signal of walking, FOG and standing sampled at
256Hz. Figure 2d) depicts the cumulative percentage of total
power in the PSD. One can see that human movement mainly
has frequency components between0 and 30Hz. More than
96% of the total energy is within this range for walking
and FOG. For standing, there is hardly any movement and
therefore the PSD is dominated by sensor noise. About10%
of the signal energy is below0.5Hz, the rest is approximately
equally distributed over the whole frequency spectrum (white
noise). Apart from the frequency distribution, the total energy
content of standing is substantially lower than for FOG or
walking. This fact allows us to define an energy threshold,
which we calledPowerTH, to distinguish between standing
and the other states.

(a) PSD for walking. (b) PSD for FOG.

(c) PSD for standing. (d) Cumulative power distribution

Fig. 2. Power spectral density (PSD) and cumulative power distribution from
0-128 Hz for walking, FOG and standing. Please note the different scale in
subfigure (c).

We used theContext Recognition Network(CRN) Toolbox
[23] for the algorithm implementation on the wearable device.
During the study we only used the shank sensor data for online
FOG detection. In order to avoid aliasing, the leg motion
was sampled at64Hz. A rectangular window function with a
window length of4 sec is used. The windowing itself is done
in steps of0.5 sec. For the PSD a256-point FFT is calculated.
The locomotion band between [0.5-3Hz] and the freeze band
between [3-8Hz] have been chosen as suggested in [22].

The flow chart of the algorithm, including the algorithms’
parameters, is given in figure 3.

III. PROOF OF CONCEPT STUDY

A. Participants

For our study idiopathic PD patients with a history of
FOG, who were able to walk unassisted in the OFF period,
were recruited. Patients were excluded if they had severe
vision or hearing loss, dementia or signs of other neuro-
logical/orthopedic diseases. The study was approved by the
local Human Subjects Review Committee, and was performed
in accordance with the ethical standards of the Declaration
of Helsinki. Ten PD patients (7 males) diagnosed with PD
(66.5±4.8 years; Hoehn-Yahr score (H&Y) in ON;2.6±0.65;
see table I) took part in this study. Motor performance among
PD patients generally shows large variability. This was also
the case among the group of patients who participated in
this study. For example, during non-freezing episodes some
patients maintained regular gait that could hardly be distin-
guished from that of healthy elderly people, while others had
a slow and unstable gait.
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Fig. 3. Flow chart describing the FOG detection algorithm including all
parameters.

B. Protocol

The study was carried out in the Laboratory for Gait and
Neurodynamics at the Department of Neurology of the Tel
Aviv Sourasky Medical Center (TASMC). Patients were tested
in the morning during the OFF stage of the medication cycle
(more than 12 hours after their last anti-parkinsonian medica-
tion intake). Two patients, who reported frequent FOG episode
during the ON state, were not asked to avoid medication
intake. After signing an informed consent form, the patients
were shown how the device works and how to take advantage
of the RAS in case of freezing. The study protocol was based
on two sessions, one without RAS feedback and one with RAS

Subject Gender Age Disease duration H&Y Tested in
ID [years] [years] in ON

01 M 66 16 3 OFF
02 M 67 7 2 ON
03 M 59 30 2.5 OFF
04 M 62 3 3 OFF
05 M 75 6 2 OFF
06 F 63 22 2 OFF
07 M 66 2 2.5 OFF
08 F 68 18 4 ON
09 M 73 9 2 OFF
10 F 65 24 3 OFF

Mean 66.4 13.7 2.6
± STD ± 4.8 ± 9.67 ± 0.65

TABLE I
GENDER, AGE, DISEASE DURATION AND H&Y RATING OF THE PATIENTS.

Fig. 4. Sketch of the path taken by the subjects during the study.

feedback that sounded whenever the wearable device detected
a freezing episode online. Each session consisted of three basic
walking tasks designed to represent different aspects of daily
walking. Figure 4 depicts a sketch of the path taken by the
subjects during the study. The walking tasks included:
(a) Walking back and forth in a straight line along the lab

hallway, including several 180 degrees turns (dashed line
in figure 4),

(b) Random walking in a reception hall space, including a se-
ries of initiated stops and several 360 degrees turns (dotted
line in figure 4). The experimenter issued instructions to
the subject to stop or to turn in different directions (at
least six turns, three in each direction),

(c) Walking simulating activities of daily living (ADL). The
ADL part included entering and leaving rooms, walking to
the lab kitchen, getting something to drink and returning
to the starting room with the cup of water (dash-dotted
line in figure 4).

Fig. 5. Snapshot of a typical experimental session, depicting one PD patient
(left) equipped with the wearable system performing random walks in the
hall. The therapist (right of the subject) instructs the PD patient and cares for
his safety. The research assistants (right back) document the session.

During the first session, the device recorded all necessary
data and performed online FOG detection; however, the RAS
feedback was deactivated.

The second session was a repetition of the first one, with
the exception that the RAS feedback was now activated. The
length of each walking session was about10-15min. Patients
walked at their own natural pace without assistance, but a
therapist remained close by for safety reasons (see figure 5).
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At the end of the study, patients returned to the examining
room, took their medication, and were debriefed by a therapist.
The protocol was approved by the ethics institutional review
board of the TASMC. All participants completed the protocol,
no side effects were observed or reported and no special
accommodations were needed.

C. Annotation of Ground Truth

All walking trials were recorded on a digital video camera.
The leg movement data was synchronized with the video
recordings using three synchronization steps at the beginning
of each recording session. One physiotherapist took notes of
relevant events during the session. Another assistant annotated
the patients’ current activity (e.g. standing, walking, turning
and freezing) in real time by pressing corresponding keys on
a laptop computer.

In a post hoc analysis physiotherapists analyzed the video
recordings to identify FOG events and determine the exact
start times, durations and end times. The beginning of a FOG
event was detected when the gait pattern (i.e., alternatingleft
right stepping) was arrested, and the end of FOG was defined
as the point in time at which the pattern was resumed. This
procedure was similar to an earlier established one [8].

D. Subjective evaluation of the study

For a subjective evaluation of the system, we asked the
participants to fill out a standardized self-report of patient
satisfaction and a questionnaire to qualify the systems’ opera-
tion. Thevisual analogue scale(VAS) and theClinical Global
Impression Change scale(CGIC) were used.

The VAS is a visual sliding scale with two anchor points,
one at each extreme. One anchor point is at “0” (i.e., ’worst’)
and the other at “10” (i.e., best). Respondents specify their
level of agreement to a statement by indicating a position on
the VAS between the two end-points [24]. Using the VAS,
patients had to grade their walking performance before and
after the study, the comfort of the system components and the
usefulness of the system for their everyday life.

The CGIC is a seven point scale that assesses how much the
patient’s performance or illness improved or worsened relative
to a baseline state at the beginning of the intervention [25]. For
example, in our questionnaire we used the scale to report the
change in FOG duration due to using our system. The scale
had the following seven anchor points: +3 = much longer;
+2, longer; +1, minimally longer; 0, no change; -1, minimally
shorter; -2, shorter; or -3, much shorter. Furthermore, the
CGIC was used to rate the number of FOG events and if
patients preferred to hear the RAS more or less frequent.
To evaluate the experiment form another perspective, the
physiotherapists answered a complementary questionnaireat
the end of the completed study. The physiotherapists were
asked how they would rate the usefulness of the system, the
influence on the patients’ gait and the suitability for use in
everyday life. Furthermore the physiotherapists were asked if
saw that patients benefited from the context aware cueing and
used it or if it was disturbing [26].

IV. RESULTS OF THE STUDY

A. Study statistics

In total,8h 20min of data were recorded. Eight patients out
of the ten exhibited FOG during the study; two patients did not
have any freeze events. The walking distance and number of
turns depended on the patient’s gait speed. One patient could
not perform the ADL part. 237 FOG events were identified
from the video recordings by the physiotherapists ranging from
0− 66 per patient with a mean of23.7 [S.D. 20.7].

The length of FOG events ranged from 0.5 sec to 40.5 sec.
(mean 7.3 sec [S.D. 6.7 sec]). 50% of the FOG episodes lasted
less than 5.4 sec, and the majority (93.2%) were less than
20 sec long (figure 6). These results are similar to earlier FOG

Fig. 6. Distribution of the number of FOG events of a specific duration
rounded to the nearest second.

duration characterizations [8].
We did not experience technical problems during the record-

ings. RAS started properly whenever a FOG episode was
detected and stopped again when FOG was no longer detected
by the algorithm.

B. Online FOG detection performance

Detection performance was evaluated using0.5 sec time
frames. The video annotations from the physiotherapists were
used as reference for all our algorithm performance evalu-
ations. The system was required to recognize FOG in less
than 2 sec after it’s onset in order for it to be reported as a
successfully detected FOG event.

Figure 7 presents the detection accuracy with reference
to sensitivity and specificity for each individual patient.On
average the sensitivity and specificity of the online FOG
detection were73.1% and81.6%, respectively.

The system did not perform equally well for all patients.
The best results were obtained for patients04 and 10. The
worst result in terms of specificity was obtained for patient01
(38.7% specificity, 97.1% sensitivity). The worst result in
terms of sensitivity was obtained for patient08 (28.7% sensi-
tivity, 87.7% specificity).

We identified that these large variations were caused by
different walking styles of the patients. Patient01 suffers from
foot drop while walking, which is characterized by intense
stepping movements along the vertical axis. For patient01 the
system was mostly not able to distinguish between walking
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Fig. 7. Sensitivity and specificity distribution for onlinedetection accuracy.
Numbers correspond to each specific patient.

periods and very short freezing events when using the global
algorithm parameter settings.

Patient 08 was the patient most affected by PD (H&Y
stage: 4) and had the most difficulties to walk. She had the
slowest and most limited mobility. This made it hard for the
device to distinguish between voluntary standing and FOG,
which explains the low sensitivity of the system for patient08.
For the remaining patients, sensitivity and specificity values
were close to or higher than 80%, as shown in figure 7.

C. Subjective questionnaire results

All patients reported that the system was unobtrusive and
did not interfere with locomotion. Also the physiotherapists
did not see any indication that the patients’ normal gait was
disturbed by the physical size and weight of the sensors and
the wearable computer. However two physiotherapists pointed
out that the size of the computing system and the attachment
method to the belt should be improved for use in everyday
life studies.

Regarding benefits of the device, five out of eight patients
who experienced FOG during the study said that they had
less freezing events with the device. The three other patients
could not see any change. Five patients had the impression
that their freezing episodes were shorter with the device.
Only one thought his episodes were longer than usual, and
two could not determine any change. Half of the patients
who experienced FOG during the study observed fewer and
shorter FOG events. The physiotherapists rated the influence
of the automatic identification of FOG events and RAS feed-
back as beneficial, especially for patients with severe FOG.
With respect to the occurrence of the feedback, two patients
expressed their preference to hear the RAS less often. In
their case, the system was too sensitive resulting in a too
many RAS occurrences. Their reaction tends to support the
observation that continuous cueing is not appreciated by the
patients and that RAS should be context-aware. Participants
for whom the detection sensitivity was low demanded to have
RAS assistance more often. Low sensitivity resulted in missed
FOG events in these patients and therefore they did not always
get the auditory assistance when experiencing FOG events.
This tends to support the previous observation that patients
felt a benefit from RAS. Three participants reported that the

feedback occurrence was just right. One participant suggested
introducing variations in the audio tone and rhythm to avoid
becoming used to the system since he believed this could make
the RAS feedback even more effective.

Similarly one physiotherapist suggested adjusting the tempo
of the RAS according to the walking speed of the patient.

Six participants were optimistic that such a personal assis-
tant could be helpful in their everyday life. The other four
participants said the trial was too short and they could not
really judge the usefulness. The physiotherapists also saw
potential in the system to support PD patients in their everyday
life. They thought the context aware automatic RAS will be
especially helpful for PD patients experiencing long FOG
events but are much aware of the RAS and capable to adapt
to the rhythm. Overall, the self-assessment indicates thatsome
of the patients benefit from the assistive device.

V. SYSTEM PERFORMANCE OPTIMIZATION

In this study, we used our modular research platform to
first investigate performance of the algorithm and perception
of the PD patients. However, the applicability of a FOG
assistant in daily life depends on multiple factors. As shown
previously, the system should be adjusted to the walking style
of each user. To maximize functionality and minimize cost it
is desirable to enable a fast, simple and robust set-up of the
parameters by care personal or the user themselves. Comfort
is an important aspect that directly relates to the on-body
placement of the sensor, but may result in a trade-off with
system performance. Finally, the perceived response time must
be minimized while maintaining robust performance. In this
section, we characterize the system with reference to these
aspects and show how it may be improved.

A. Subject dependent parameter optimization

We analyze the influence that the two detection threshold
parametersPowerTHandFreezeTHhave on the performance
of the detection algorithm, when using the sensor data of the
ankle position on the vertical axis. When optimizing the detec-

Fig. 8. Min(Sens,Spec) plot for patient 01 (vertical axis ofthe sensor at the
ankle).

tion performance there is a trade-off between sensitivity and
specificity. For our work we chose to take minimum sensitivity
and specificitymin(Sens, Spec) as a performance measure-
ment, because the maximum point in themin(Sens, Spec)-
data space corresponds to the parameter combination where
the performanceequal error rate(EER) is at a minimum. The
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EER is commonly used to compare two systems, because it
gives a single scalar value. The lower the EER is, the more
accurate the system is considered to be. In our performance
evaluation the EER is given by

EER = 1− max
freezeTH,powerTH

{min(Sens, Spec)}

wheremaxfreezeTH,powerTH {min(Sens, Spec)} is the max-
imum point in themin(Sens, Spec) data space. Figure 8

Fig. 9. Evaluation of parameter combinations: The black dots mark the
optimal parameter combination; the gray areas mark all parametercombina-
tions with a detection accuracy less than 5% below the maximum. Upward
and downward pointing triangles mark group parameter sets forsmooth and
saccadic walking styles. Patient04 and10 are excluded because they did not
have FOG during our study.

shows the performance evaluation for patient01. By op-
timizing the parameters for each individual user, we can
compute the maximum performance achievable with the given
algorithm.

Figure 9 shows the evaluation of possible parameter com-
binations for each individual patient. The black dots mark the
optimal parameter combination. Gray areas mark all parameter
combinations with a detection accuracy that is less than 5%
below the maximum. For some patients (e.g. patients01,03,07)
the algorithm performance is relatively insensitive to small
threshold variations. For some patients (e.g. patients02,05,06)
the algorithm performance is only insensitive to thePowerTH.
For patient08 the algorithm performance is most sensitive to
thePowerTH. As discussed previously, patient08 is the patient
most effected by PD and with akinesic (’without motion’)
FOG. The akinesic FOG is an explanation for thePowerTH
sensitivity.

When optimizing the two parameters for each patient, we
achieved on average a sensitivity of 88.6% and a specificity of
92.4% This is the optimal sensitivity Sensopt and specificity
Specopt that can be expected with optimized user specific
parameters, shown in figure 10a).

Next we evaluated two other sets of parameters. First we
evaluated parameters optimized globally for all users (user-
independent optimization). Then we evaluated two parameter

sets for ’smooth’ and ’intensified stepping’ walking styles.
Performance is quantified with respect to the user-specific per-
formance using the equation Perftest = (Sensopt - Senstest) +
(Specopt - Spectest) where Senstest and Spectest are achieved
using the parameter set being evaluated. A smaller Perftest is
correlated to an improved performance of the tested parameter
set.

For the performance evaluation using global, user inde-
pendent parameters we performed a leave-one-out cross-
validation, which means that the global parameters are op-
timized for N -1 subjects and performance is tested on the
remaining subject. This step is repeated until the performance
was tested for all subjects. Cross-validation allows us to
evaluate how well the system behaves when it is applied
to patients whose data was not used during the parameter
optimization. In other words, it indicates how well the system
can be generalized. User-independent performance is indicated
in figure 10b). On average the algorithm performance with
global parameters is 11.1% (STD±5.3%) below the optimal
user-specific performance.

Finally we analyzed the detection performance when sepa-
rating the patients into two groups with group parameter sets.
In the plots of figure 9, we identified two main groups: Group
i) patients with smooth walking and an optimalFreezeTH
below 2.5; Group ii) patients with intensified stepping and
an optimalFreezeTHabove 2.5. Based on these findings, we
analyzed the detection performance when grouping the10
patients into these two groups.FreezeTHand PowerTH for
the two groups were chosen manually as the visual average of
the observation in figure 9. The two parameter sets are marked
in the plots of figure 9 using upward and downward pointing
triangles. Figure 10c) presents the sensitivity/specificity of the
two parameter sets for the patients with smooth walking and
intensified stepping. On average the performance is 3.7% (STD
±2.8%) below the optimal user-specific performance.

These results indicate that even with a simple method, e.g.
a switch to select between two parameter sets, the system is
able to perform at a level close to the optimum performance.
This allows care personnel to rapidly setup the system and
still maintain good performance. It may also be used by the
patients themselves to adjust the sensitivity and specificity of
the system.

B. Sensor placement characterization

In this section, we analyze the detection performance of
the system for different sensor placements and orientations to
determine the best sensor location while considering the trade-
off between wearability and performance.

For example, figure 11 shows a5min long section of a
signal measured by the sensor at the hip and at the ankle of
patient02. Clearly there is a difference between the signals -
the signal of the sensor at the hip is much smaller (damped),
but the motion is still very well visible. Table II lists the
average performance of the system for all 10 patients using
the algorithm with global parameters (leave-one-out cross-
validation). Results are listed for 12 combinations of three
sensor positions (ankle, knee and hip) and four axes combi-
nations, which are the horizontal forward axisx, the vertical
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(a) Sens-Spec for optimal patient dependent pa-
rameter.

(b) Sens-Spec for leave-one-out cross validation,
patient independent parameter.

(c) Sens-Spec with parameter sets for smooth
walking and intensified stepping gait.

Fig. 10. Sensitivity and specificity plots for different parameter sets evaluated using the data of the vertical axis of the ankle sensor.

Fig. 11. A 5 min signal extract from patient 02 using data from the sensor
at the hip (upper plot) and at the ankle (lower plot) togetherwith the freeze
index (FI) and the FOG detected parts.

axis y, the horizontal lateral axisz and the magnitude of all
three axesn =

√

x2 + y2 + z2.
The best results are achieved when using the vertical axis

of the sensor at the knee. However, placing sensors on the
thigh just above the knee is the most inconvenient position to
wear a sensor. The detection accuracy for the sensor placement
at other positions is nevertheless quite good. These results
are very promising, because sensors can be placed at a more
convenient body position without losing much in accuracy.

x y z n

Sensor at ankle

Sens 87%(16%) 81%(14%) 80%(13%) 79%(15%)

Spec 87%(14%) 87%(11%) 81%(19%) 86%( 9%)

Sensor at knee

Sens 76%(20%) 85%(13%) 82%(18%) 82%(15%)

Spec 85%(16%) 88%(13%) 84%(20%) 83%(13%)

Sensor at hip

Sens 81%(19%) 71%(25%) 78%(32%) 78%(19%)

Spec 84%(28%) 79%(20%) 79%(22%) 80%(24%)

TABLE II
SENSOR POSITION EVALUATION: SENSITIVITY AND SPECIFICITY (± STD)
FOR EACH COMBINATION OF SENSOR POSITION(ANKLE , KNEE, HIP) AND

AXIS ORIENTATION (x = HORIZONTAL FORWARD, y = VERTICAL , z =
HORIZONTAL LATERAL AND n =

√

x2 + y2 + z2 = MAGNITUDE OF ALL

THREE AXIS).

C. Latency optimization

Latency refers to the time between the onset of FOG and the
time it takes the system to react. In this section, we analyzethe
potential for latency optimization. The latency of the algorithm
is dominated by the data sampling window length used.

Fig. 12. Detection performance vs. window length (latency)

For this analysis, we plotted the accuracy of FOG detection
versus window length (see figure 12) - keeping the frequency
resolution identical by zero-padding [27]. When increasingthe
window length up to a maximum of4.5 sec, the detection
performance increases. Further increases in the window size
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reduce the detection performance again. This behavior can be
explained as follow: An increasing window length improves
the calculation of the correct frequency spectrum by reducing
the leakage-effect and resulting in an upward sloping curve.
Additionally, an increasing window length also increases the
latency of the algorithm, resulting in more missed FOG events
and a reduction of the detection accuracy. Therefore the
optimal window length for the best detection performance
when taking latency into account is4.5 sec.

VI. D ISCUSSION

The limitations of this study are the short time available for
the patients to test the system, the limited number of patients as
well as its execution in a medical center and not an actual daily
life environment. Although all ten patients reported a history of
FOG, only eight experienced freezing during the experiment.
The controlled environment of the study and the presence of
the physiotherapist may have reduced the likelihood of FOG
in the two patients who did not experience any FOG event
during the study. Both patients reported many FOG events at
home and could not explain why they did not have any FOG
during the study. They expressed a desire to test our device
during their natural daily activities.

Further investigations are required to analyze and demon-
strate real-world performance. We still do not know how
patients will judge the benefit of the system after using it
for hours over several days. We speculated that after an initial
training period the machine human interface will become more
automatic and subconscious.

In this study we used a customized general purpose mod-
ular research platform. There are several areas for technical
improvements [28]. This modular platform could be turned
into a specialized system specifically designed for our task.
It could be miniaturized into a single sensor node that in-
cludes the FOG algorithm. Roggen et al. have shown that
complex calculations such as FFT, which are used in the
online detection of FOG, can be processed with low power
consumption on a device of the size of a button [29]. Such a
system could be entirely integrated into or attached to normal
shoes of the patient, and only the trigger signal for the RAS is
transmitted to the feedback device. The RAS could be given
via a hearing-aid like device or even a hearing aid itself. This
implementation remains the object of future work. However
a complexity analysis of the algorithms shows that this is a
realistic goal. Future research needs to address differentRAS
sounds in more detail. While regular rhythms are an important
feature of the auditory stimulation, they may be embedded
within musical elements, or include other sounds than the
metronomic type.

VII. C ONCLUSION

In this study we evaluated the feasibility of using a wearable
health assistant to support PD patients with FOG. To our
knowledge, this is the first time that FOG has been auto-
matically detected online using a wearable device in order
to provide RAS to patients. The system detected FOG events

with a user-independent sensitivity of 73.1% and a specificity
of 81.6%.

Due to the large variability between patients’ gait we
showed that a user specific parameter optimization improves
the detection performance up to 88.6% sensitivity and 92.4%
specificity. A rough segmentation of the patients into smooth
and intensified stepping walkers, together with a specific sensi-
tivity adjustment improved the detection performance to 85.9%
sensitivity and 90.9% specificity. With a global threshold,a
detection accuracy of 78.1% sensitivity and 86.9% specificity
was achieved.

We received promising feedback from the participants.
Some patients even expressed the motivation to wear the sys-
tem for several weeks. However this has to be taken carefully
because the patients did not use the system for more than one
hour. Further miniaturization potentially increases acceptance
by patients. The answers obtained from studying the influence
and effects of automatic cueing were also promising. At least
half of the participants saw a positive effect. The demand for
more frequent RAS feedback of the participants for whom the
system had a low sensitivity shows that these patients felt that
the feedback helped them. On the other hand, the demand
for less auditory feedback of the participants for whom the
system had a low specificity suggests that continuous RAS
may be annoying and that a context aware triggering of the
RAS is preferable.

The analysis of three different sensor locations showed that
all three locations could be used for FOG detection although
there are minor differences in detection performance. The
ankle position is especially promising because it could enable
integration of the sensor into a shoe. At the hip position, the
sensor could be integrated into a belt. However the sensor
location at the hip is much more parameter sensitive and there-
fore less preferable for real world applications. Performance
may be further increased by using sensor fusion, especiallyfor
patients where freezing does not result in tremor in both legs.
In our preliminary investigation we have used our flexible, yet
bulky general purpose wearable computing platform. However,
the algorithmic complexity suggests the design of a specialized
system which is miniaturized to the size of a button, and
includes the FOG algorithm integrated directly into the sensor
note itself.
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